

Integration of Bioenergy Crops in Agroforestry

Shibu Jose H.E. Garrett Endowed Professor and Director

Why Bioenergy Crops?

Energy Security is as important for any country as Food Security

In the US, In 2013, nearly 5 out of 10 g ²⁰ we pumped in our cars came from a foreign country

EISA of 2007 mandates the use 36 billion gallon of biofuels by 2022 (1/4th of the petroleum consumption in 2009); 21 billion from cellulosic biofuels

Sustainable production of biomass feedstock is one of the major bottlenecks

Agroforestry: A Flexible Land Use System to Accommodate Biomass Production

Intentional integration of trees and crops/livestock where interactions are intensively managed

Commercial Scale Example

Joint Venture

LSU

The Center for Agroforestry University of Missouri

Biomass Production Potential

Species	Annual yield (Mg ha ⁻¹)	Rotation	Location	Citation	
Agricultural crop					
Maize (Zea mays) grain	7–9	Annual	Illinois	Tollenaar and Lee (2002)	
Maize grain	9.7	Annual	United States	USDA (2010a, b)	
Sorghum (Sorghum bicolor) grain	4.5	Annual	United States	USDA (2010a, b)	
Tree species					
Black locust (Robinia pseudoacacia)	7.3	Annual	Kansas	Geyer (2006)	
Cottonwood (Populus deltoides)	5.4	Annual	Kansas	Geyer (2006)	
Honey locust (Gleditsia triacanthos)	6.1	Annual	Kansas	Geyer (2006)	
Poplar (Populus) clones					
7300501	16.8	5 years	Iowa	Riemenschneider et al. (2001)	
80X00601	17.2	5 years	Wisconsin	Riemenschneider et al. (2001)	
D121	6.8	5 years	Minnesota	Riemenschneider et al. (2001)	
Eugenii	17.0	10 years	Iowa	Goerndt and Mize (2008)	
Eugenii	5.4	7 years	Iowa	Tufekcioglu et al. (2003)	
Crandon	30.0	10 years	Iowa	Goemdt and Mize (2008)	
Silver maple (Acer saccharinum)	5.7	Annual	Kansas	Geyer (2006)	
Silver maple	18.0	10 years	Iowa	Goemdt and Mize (2008)	
Silver maple	8.4	4 years	Iowa	Schultz et al. (1995)	
Willow (Salix) clones					
SX67	18.3	2 years	Minnesota	Thelemann et al. (2010)	
9882-41	12.5	2 years	Minnesota	Thelemann et al. (2010)	
Grass					
Miscanthus (<i>Miscanthus</i> \times giganteus)	29.6	Annual	Illinois	Heaton et al. (2008)	
Switchgrass (Panicum virgatum)	10.4	Annual	Illinois	Heaton et al. (2008)	
Switchgrass	9.4	Annual	Illinois	Khanna et al. (2008)	
Switchgrass	13.1-19.9	Annual	Iowa	Tufekcioglu et al. (2003)	
Giant cane (Arundinaria gigantea)	6.8	5 years	Illinois	Schoonover, personal communication	

Alley Cropping Design

Riparian Buffer: Another Agroforestry Practice Suitable for Biomass Production

The Center for Agroforestry University of Missouri

Promising Biomass Feedstock Species

Leaching fluxes of NO3 –N under switchgrass, Native Prairie and Miscanthus in central Illinois, USA. Gopalakrishnan et al., 2012

Annual leaching fluxes of NO3 and NH4 N at 50 cm depth under corn-soybean, switchgrass, and Miscanthus in central Illinois, USA. Heaton et al., 2010

What Does it Mean at the Farm Scale?

What Does it Mean at the Small Watershed Scale?

Rainfall = 607 mm (34% lower) 30-yr Average = 919 mm

What Does it Mean at the Large Watershed Scale?

142,700 ha

80% Agriculture/Pasture9% Forest5% Wetland4% Water2% Urban

15% of highly erodible and marginal land converted to switchgrass

SWAT model simulation, Rathbun Lake watershed, Iowa. Neppel et al. 2001

Neppel et al. 2001

Higher biomass production in agroforestry compared to open field!!

Field and willow clone	2006 ^a		2007 ^b		
	Yield ^c (odt ha ⁻¹)	Percent survival	Yield ^c (odt ha ⁻¹)	Percent survival	
Agroforestry	0.78 [*]	93 [*]	3.00 [*]	89 [°]	
SV1	0.56b	90c	3.93a	90a	
SX67	0.89a	96a	3.30a	90a	
9882-41	0.89a	92b	1.77b	88a	
Control	0.54 [°]	86 [°]	1.11 [*]	66 [*]	
SV1	0.83a	95a	1.63b	79b	
SX67	0.46c	81d	1.03b	63c	
9882-41	0.33c	81d	0.68c	57d	

Clinch et al. 2009

-	Scenario	Definition	SG price (\$ Mg ⁻¹)	Stumpage price (\$ m ⁻³	
				High LEV (\$ h	Medium a ⁻¹)
	Scenario A	No intercropping	n.a	6888.88	4659.3
	Scenario B	No decrease	15	6686.9	4457.5
		in SG or LP productivity	30	7708.5	5479.0
			44	8662.9	6440.5
			50	9084.6	6862.2
Expectation	Scenario C	15% decrease in SG productivity	15	6555.7	4326.2
Value			30	7446.0	5216.5
			44	8277.0	6047.5
			50	8633.1	6410.8
	Scenario D	15% decrease in SG and LP productivity	15	5365.2	3418.8
			30	6255.5	4309.2
			44	7086.5	5140.1
			50	7447.8	5505.8
	Scenario E	15% decrease in SG and 25% decrease in LP productivity	15	4571.6	2815.6
			30	5461.9	3704.2
			44	6292.8	4535.2
			50	6657.5	4902.5
	Scenario F ^a	SG monoculture	15	-427.9	
(1077 trees/ha)			30	2891.1	
			44	5988.8	
			50	7316.4	

A Blueprint for Bio-based Economy

10% of the marginal land base (`10 million acres) established in biomass feedstock crops– SOLVING A MAJOR BOTTLENECK

8 BGY advanced biofuel (e.g. butanol, green diesel etc.) by 2022 – NATIONAL MODEL FOR ADV. BIOFUEL

\$3 to \$4.5 billion net economic impact and associated social and environmental benefits, particularly in rural areas along the MS/MO River Corridor in the near-term- JOBS, CLEAN AIR & WATER

